
Phrasal: A Toolkit for Statistical Machine Translation
with Facilities for Extraction and Incorporation of Arbitrary Model Features

Daniel Cer, Michel Galley, Daniel Jurafsky and Christopher D. Manning
Stanford University

Stanford, CA 94305, USA

Abstract

We present a new Java-based open source
toolkit for phrase-based machine translation.
The key innovation provided by the toolkit
is to use APIs for integrating new fea-
tures (/knowledge sources) into the decod-
ing model and for extracting feature statistics
from aligned bitexts. The package was used
to develop a number of useful features written
to these APIs including features for hierarchi-
cal reordering, discriminatively trained linear
distortion, and syntax based language mod-
els. Useful utilities distributed with the toolkit
include: a conditional phrase extraction sys-
tem that builds a phrase table just for a spe-
cific dataset; and an implementation of MERT
that allows for pluggable evaluation metrics
for both training and evaluation with built in
support for a variety of metrics (e.g., TERp,
BLEU, METEOR).

1 Motivation

Progress in machine translation (MT) depends crit-
ically on the development of new and better model
features that allow translation systems to better iden-
tify and construct high quality machine translations.
The popular Moses decoder (Koehn et al., 2007)
was designed to allow new features to be defined us-
ing factored translation models. In such models, the
individual phrases being translated can be factored
into two or more abstract phrases (e.g., lemma, POS-
tags) that can be translated individually and then
combined in a separate generation stage to arrive at
the final target translation. While greatly enriching
the space of models that can be used for phrase-
based machine translation, Moses only allows fea-
tures that can be defined at the level of individual
words and phrases.

The Phrasal toolkit provides easy-to-use APIs
for the development of arbitrary new model fea-
tures. It includes an API for extracting feature

statistics from aligned bitexts and for incor-
porating the new features into the decoding
model. The system has already been used to
develop a number of innovative new features
(Chang et al., 2009; Galley and Manning, 2008;
Galley and Manning, 2009; Green et al., 2010) and
to build translation systems that have placed well
at recent competitive evaluations, achieving second
place for Arabic to English translation on the NIST
2009 constrained data track.1

We implemented the toolkit in Java because it of-
fers a good balance between performance and de-
veloper productivity. Compared to C++, develop-
ers using Java are 30 to 200% faster, produce fewer
defects, and correct defects up to 6 times faster
(Phipps, 1999). While Java programs were histori-
cally much slower than similar programs written in
C or C++, modern Java virtual machines (JVMs) re-
sult in Java programs being nearly as fast as C++
programs (Bruckschlegel, 2005). Java also allows
for trivial code portability across different platforms.

In the remainder of the paper, we will highlight
various useful capabilities, components and model-
ing features included in the toolkit.

2 Toolkit

The toolkit provides end-to-end support for the cre-
ation and evaluation of machine translation models.
Given sentence-aligned parallel text, a new transla-
tion system can be built using a single command:

java edu.stanford.nlp.mt.CreateModel \
(source.txt) (target.txt) \
(dev.source.txt) (dev.ref) (model_name)

Running this command will first create word
level alignments for the sentences in source.txt
and target.txt using the Berkeley cross-EM aligner

1http://www.itl.nist.gov/iad/mig/tests
/mt/2009/ResultsRelease/currentArabic.html

http://www.itl.nist.gov/iad/mig/tests/mt/2009/ResultsRelease/currentArabic.html
http://www.itl.nist.gov/iad/mig/tests/mt/2009/ResultsRelease/currentArabic.html


Figure 1: Chinese-to-English translation using discontinuous phrases.

(Liang et al., 2006).2 From the word-to-word
alignments, the system extracts a phrase ta-
ble (Koehn et al., 2003) and hierarchical reorder-
ing model (Galley and Manning, 2008). Twon-
gram language models are trained on the tar-
get.txt sentences: one over lowercased target sen-
tences that will be used by the Phrasal decoder
and one over the original source sentences that
will be used for truecasing the MT output. Fi-
nally, the system trains the feature weights for the
decoding model using minimum error rate train-
ing (Och, 2003) to maximize the system’s BLEU
score (Papineni et al., 2002) on the development
data given by dev.source.txt and dev.ref. The toolkit
is distributed under the GNU general public license
(GPL) and can be downloaded fromhttp://
nlp.stanford.edu/software/phrasal.

3 Decoder

Decoding Engines The package includes two de-
coding engines, one that implements the left-to-
right beam search algorithm that was first intro-
duced with the Pharaoh machine translation system
(Koehn, 2004), and another that provides a recently
developed decoding algorithm for translating with
discontinuous phrases (Galley and Manning, 2010).
Both engines use features written to a common but
extensible feature API, which allows features to be
written once and then loaded into either engine.

Discontinuous phrases provide a mechanism for
systematically translating grammatical construc-
tions. As seen in Fig. 1, using discontinuous phrases
allows us to successfully capture that the Chinese
construction当 X的 can be translated aswhen X.

Multithreading The decoder has robust support
for multithreading, allowing it to take full advantage
of modern hardware that provides multiple CPU
cores. As shown in Fig. 2, decoding speed scales
well when the number of threads being used is in-
creased from one to four. However, increasing the

2Optionally, GIZA++ (Och and Ney, 2003) can also be used
to create the word-to-word alignments.

1 2 3 4 5 6 7 8

15
25

35

Cores

tr
an

la
tio

ns
 p

er
 m

in
ut

e

Figure 2: Multicore translations per minute on a sys-
tem with two Intel Xeon L5530 processors running at
2.40GHz.

threads past four results in only marginal additional
gains as the cost of managing the resources shared
between the threads is starting to overwhelm the
value provided by each additional thread. Moses
also does not run faster with more than 4-5 threads.3

Feature API The feature API was designed to
abstract away complex implementation details of
the underlying decoding engine and provide a sim-
ple consistent framework for creating new decoding
model features. During decoding, as each phrase
that is translated, the system constructs aFeaturiz-
able object. As seen in Table 1,Featurizable objects
specify what phrase was just translated and an over-
all summary of the translation being built. Code that
implements a feature inspects theFeaturizable and
returns one or more named feature values. Prior to
translating a new sentence, the sentence is passed to
the active features for a decoding model, so that they
can perform any necessary preliminary analysis.

Comparison with Moses Credible research into
new features requires baseline system performance
that is on par with existing state-of-the-art systems.
Seen in Table 2, Phrasal meets the performance of
Moses when using the exact same decoding model
feature set as Moses and outperforms Moses signifi-
cantly when using its own default feature set.4

3http://statmt.org/moses
/?n=Moses.AdvancedFeatures (April 6, 2010)

4Phrasal was originally written to replicate Moses as it was
implemented in 2007 (release 2007-05-29), and the current ver-

http://nlp.stanford.edu/software/phrasal
http://nlp.stanford.edu/software/phrasal
http://statmt.org/moses/?n=Moses.AdvancedFeatures
http://statmt.org/moses/?n=Moses.AdvancedFeatures


Featurizable
Last Translated Phrase Pair
Source and Target Alignments
Partial Translation
Source Sentence
Current Source Coverage
Pointer to Prior Featurizable

Table 1: Information passed to features in the form of a
Featurizable object for each translated phrase.

System Features MT06 (tune) MT03 MT05
Moses Moses 34.23 33.72 32.51
Phrasal Moses 34.25 33.72 32.49
Phrasal Default 35.02 34.98 33.21

Table 2: Comparison of two configurations of Phrasal
to Moses on Chinese-to-English. One Phrasal configura-
tion uses the standard Moses feature set for single factor
phrase-based translation with distance and phrase level
msd-bidirectional-fe reordering features. The other uses
the default configuration of Phrasal, which replaces the
phrase levelmsd-bidirectional-fe feature with a hierarchi-
cal reordering feature.

4 Features

The toolkit includes the basic eight phrase-based
translation features available in Moses as well as
Moses’ implementation of lexical reordering fea-
tures. In addition to the common Moses features,
we also include innovative new features that im-
prove translation quality. One of these features is
a hierarchical generalization of the Moses lexical
reordering model. Instead of just looking at the
reordering relationship between individual phrases,
the new feature examines the reordering of blocks
of adjacent phrases (Galley and Manning, 2008) and
improves translation quality when the material be-
ing reordered cannot be captured by a single phrase.
This hierarchical lexicalized reordering model is
used by default in Phrasal and is responsible for the
gains shown in Table 2 using the default features.

To illustrate how Phrasal can effectively be used
to design rich feature sets, we present an overview
of various extensions that have been built upon the
Phrasal feature API. These extensions are currently

sion still almost exactly replicates this implementation when us-
ing only the baseline Moses features. To ensure this configura-
tion of the decoder is still competitive, we compared it against
the current Moses implementation (release 2009-04-13) and
found that the performance of the two systems is still close. The
current Moses implementation obtains slightly lower BLEU
scores, respectively 33.98 and 32.39 on MT06 and MT05.

not included in the release:

Target Side Dependency Language Model The
n-gram language models that are traditionally used
to capture the syntax of the target language do a
poor job of modeling long distance syntactic rela-
tionships. For example, if there are a number of
intervening words between a verb and its subject,
n-gram language models will often not be of much
help in selecting the verb form that agrees with the
subject. The target side dependency language model
feature captures these long distance relationships by
providing a dependency score for the target transla-
tions produced by the decoder. This is done using
an efficient quadratic time algorithm that operates
within the main decoding loop rather than in a sepa-
rate reranking stage (Galley and Manning, 2009).

Discriminative Distortion The standard distor-
tion cost model used in phrase-based MT systems
such as Moses has two problems. First, it does not
estimate the future cost of known required moves,
thus increasing search errors. Second, the model pe-
nalizes distortion linearly, even when appropriate re-
orderings are performed. To address these problems,
we used the Phrasal feature API to design a new
discriminative distortion model that predicts word
movement during translation and that estimates fu-
ture cost. These extensions allow us to triple the
distortion limit and provide a statistically significant
improvement over the baseline (Green et al., 2010).

Discriminative Reordering with Chinese Gram-
matical Relations During translation, a source
sentence can be more accurately reordered if the
system knows something about the syntactic rela-
tionship between the words in the phrases being re-
ordered. The discriminative reordering with Chinese
grammatical relations feature examines the path be-
tween words in a source-side dependency tree and
uses it to evaluate the appropriateness of candidate
phrase reorderings (Chang et al., 2009).

5 Other components

Training Decoding Models The package includes
a comprehensive tool set for training decoding mod-
els. It supports MERT training using coordinate de-
scent, Powell’s method, line search along random
search directions, and downhill Simplex. In addi-
tion to the BLEU metric, models can be trained
to optimize other popular evaluation metrics such



as METEOR (Lavie and Denkowski, 2009), TERp
(Snover et al., 2009), mWER (Nießen et al., 2000),
and PER (Tillmann et al., 1997). It is also possible
to plug in other new user-created evaluation metrics.

Conditional Phrase Table Extraction Rather
than first building a massive phrase table from a par-
allel corpus and then filtering it down to just what
is needed for a specific data set, our toolkit sup-
ports the extraction of just those phrases that might
be used on a given evaluation set. In doing so, it
dramatically reduces the time required to build the
phrase table and related data structures such as re-
ordering models.

Feature Extraction API In order to assist in the
development of new features, the toolkit provides
an API for extracting feature statistics from a word-
aligned parallel corpus. This API ties into the condi-
tional phrase table extraction utility, and thus allows
for the extraction of just those feature statistics that
are relevant to a given data set.

6 Conclusion

Phrasal is an open source state-of-the-art Java-
based machine translation system that was designed
specifically for research into new decoding model
features. The system supports traditional phrase-
based translation as well as translation using discon-
tinuous phrases. It includes a number of new and
innovative model features in addition to those typi-
cally found in phrase-based translation systems. It is
also packaged with other useful components such as
tools for extracting feature statistics, building phrase
tables for specific data sets, and MERT training rou-
tines that support a number of optimization tech-
niques and evaluation metrics.

Acknowledgements
The Phrasal decoder has benefited from the help-
ful comments and code contributions of Pi-Chuan
Chang, Spence Green, Karthik Raghunathan,
Ankush Singla, and Huihsin Tseng. The software
presented in this paper is based on work work was
funded by the Defense Advanced Research Projects
Agency through IBM. The content does not neces-
sarily reflect the views of the U.S. Government, and
no official endorsement should be inferred.

References

Thomas Bruckschlegel. 2005. Microbenchmarking C++,
C#, and Java.C/C++ Users Journal.

P. Chang, H. Tseng, D. Jurafsky, and C.D. Manning.
2009. Discriminative reordering with Chinese gram-
matical relations features. InSSST Workshop at
NAACL.

Michel Galley and Christopher D. Manning. 2008. A
simple and effective hierarchical phrase reordering
model. InEMNLP.

Michel Galley and Christopher D. Manning. 2009.
Quadratic-time dependency parsing for machine trans-
lation. InACL.

Michel Galley and Christopher Manning. 2010. Improv-
ing phrase-based machine translation with discontigu-
ous phrases. InNAACL.

Spence Green, Michel Galley, and Christopher D. Man-
ning. 2010. Improved models of distortion cost for
statistical machine translation. InIn NAACL.

Philipp Koehn, Franz Och, and Daniel Marcu. 2003. Sta-
tistical phrase-based translation. InNAACL.

P. Koehn, H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin,
and E. Herbst. 2007. Moses: Open source toolkit for
statistical machine translation. InACL.

Philipp Koehn. 2004. Pharaoh: A beam search decoder
for phrase-based statistical machine translation mod-
els. InAMTA.

Alon Lavie and Michael J. Denkowski. 2009. The
METEOR metric for automatic evaluation of machine
translation.Machine Translation, 23.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. InNAACL.

Sonja Nießen, Franz Josef Och, and Hermann Ney. 2000.
An evaluation tool for machine translation: Fast eval-
uation for MT research. InLREC.

Franz Josef Och and Hermann Ney. 2003. A system-
atic comparison of various statistical alignment mod-
els. Computational Linguistics, 29(1):19–51.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. InACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. InACL.

Geoffrey Phipps. 1999. Comparing observed bug and
productivity rates for java and C++.Softw. Pract. Ex-
per., 29(4):345–358.

M. Snover, N. Madnani, B.J. Dorr, and R. Schwartz.
2009. Fluency, adequacy, or HTER?: exploring dif-
ferent human judgments with a tunable MT metric. In
SMT workshop at EACL.

C. Tillmann, S. Vogel, H. Ney, A. Zubiaga, and H. Sawaf.
1997. Accelerated DP based search for statistical
translation. InIn Eurospeech.


